### Nutritional interventions for the prevention of cognitive impairment and dementia in East Asia

A systematic review (and meta-analysis)

# Aim and objectives

- The aim of this systematic review is to evaluate the current evidence on nutritional interventions in young and older adults for the prevention of dementia and cognitive decline in East Asian Countries.
- Primary outcome:
  - Description of current nutritional interventions for the prevention of cognitive decline and dementia.
- Secondary outcome:
  - 1) study design, sample characteristics, sampling strategies and duration;
  - 2) description of intervention in control group;
  - 3) modalities of delivery of the interventions;
  - 4) attrition rates, compliance and safety of interventions;
  - 5) effect size on outcomes;
  - 6) assessment of strength of evidence and study quality;
  - 7) funding sources and declaration of conflicts of interest.

### Protocol systematic review

- Type of studies: RCTs
- Condition studied: Cognitive impairment and dementia
- **Participants:** Adult participants (age  $\geq 18$  years) with and without health comorbidities.
- Interventions: All interventions with a nutritional component.
- Context: Studies conducted in East Asia
  - Malaysia, Thailand, Brunei Darussalam, China, Hong Kong, Indonesia, Myanmar, Papua New Guinea, Philippines, Korea, Singapore, Taiwan, Vietnam, Cambodia, and Laos.

# Flowchart

- Literature search in:
  - Embase;
  - Medline;
  - Scopus;
  - and PsycInfo.



### Included studies

### **Twenty-one RCTs conducted in South-East Asia.**

- Micro-nutrient supplements [N=6]
- Chicken essence [N=5]
- Nutrition education [N=4]
- EPA / DHA supplements [N=3]
- Soy-isoflavone [N=1]
- L-carnitine [N=1]
- Caffeinated alcoholic beverage [N=1]

# Meta-analysis

### Effect of nutrition interventions on cognitive performance

| Group by        | Study                                                                                                            | Outcome                | Stat                 | istics for     | each st        | udy     |       | Std diff        | in means and | 95% CI          |       |                    |
|-----------------|------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|----------------|----------------|---------|-------|-----------------|--------------|-----------------|-------|--------------------|
| Intervention    | name                                                                                                             |                        | Std diff<br>in means | Lower<br>limit | Upper<br>limit | p-Value |       |                 |              |                 |       | Relative<br>weight |
| Vitamins        | Sun, 2007                                                                                                        | Combined               | -0,13                | -0,54          | 0,29           | 0,55    |       | 1               |              | 1               |       | 24,32              |
| Vitamins        | Cheng, 2016                                                                                                      | BCAT: total score      | 0,31                 | -0,13          | 0,74           | 0,17    |       |                 |              | _               |       | 23,89              |
| Vitamins        | Ng, 2017                                                                                                         | RBANS: global score    | 0,51                 | 0,11           | 0,92           | 0,01    |       |                 |              |                 |       | 24,72              |
| Vitamins        | Ma, 2016                                                                                                         | WAIS-RC: full scale IQ | 0,88                 | 0,57           | 1,19           | 0,00    |       |                 |              |                 |       | 27,06              |
| Vitamins        |                                                                                                                  |                        | 0,41                 | -0.03          | 0.84           | 0,07    |       |                 |              |                 |       |                    |
| Chicken essence | Chan, 2016                                                                                                       | Combined               | -0,07                | -0,46          | 0,32           | 0,73    |       |                 |              |                 |       | 36,77              |
| Chicken essence | Azhar, 2008                                                                                                      | Combined               | 0.05                 | -0,43          | 0.52           | 0,85    |       |                 |              | - C             |       | 24,51              |
| Chicken essence | Zain, 2003                                                                                                       | Combined               | 0,20                 | -0,18          | 0,58           | 0,30    |       |                 |              | -               |       | 38,72              |
| Chicken essence |                                                                                                                  |                        | 0.06                 | -0,17          | 0,30           | 0,60    |       |                 | -            |                 |       |                    |
| Education       | Kwok, 2012                                                                                                       | Combined               | -0.10                | -0.33          | 0.12           | 0,37    |       |                 |              |                 |       | 50.08              |
| Education       | Rosli, 2017                                                                                                      | Combined               | 0.16                 | -0.09          | 0.42           | 0,21    |       |                 | +            |                 |       | 41,54              |
| Education       | Johari, 2014                                                                                                     | Combined               | 0.19                 | -0,48          | 0.85           | 0,59    |       |                 |              | -               |       | 8.38               |
| Education       |                                                                                                                  |                        | 0.03                 | -0,17          | 0.23           | 0,75    |       |                 | 4            |                 |       |                    |
| EPA / DHA       | Chiu, 2008                                                                                                       | Combined               | 0.14                 | -0,60          | 0.88           | 0,70    |       |                 |              |                 |       | 25,66              |
| EPA / DHA       | Bo, 2017                                                                                                         | BCAT: total score      | 0.62                 | 0,19           | 1.06           | 0,00    |       |                 | - I          |                 |       | 34,96              |
| EPA / DHA       | Zhang, 2017                                                                                                      | WAIS-RC: full scale IC | ) 1.21               | 0,94           | 1,49           | 0,00    |       |                 |              | +               | 8     | 39.38              |
| EPA / DHA       |                                                                                                                  |                        | 0.73                 | 0,14           | 1.32           | 0,01    |       |                 |              |                 |       | 1                  |
| Soy-isoflavone  | Ho, 2007                                                                                                         | Combined               | -0.03                | -0,32          | 0,27           | 0,86    |       |                 | _            |                 |       | 100,00             |
| Soy-isoflavone  |                                                                                                                  |                        | -0.03                | -0.32          | 0.27           | 0.86    |       |                 | -            |                 |       |                    |
| CAB             | Cheng, 2017                                                                                                      | Combined               | 0.02                 | -0.36          | 0.39           | 0.93    |       |                 | -            |                 |       | 100,00             |
| CAB             | and the second |                        | 0.02                 | -0.36          | 0.39           | 0.93    |       |                 |              |                 |       | 111121140111       |
| verall          |                                                                                                                  |                        | 0,09                 | -0,03          | 0,21           | 0,16    |       |                 | -            |                 |       |                    |
|                 |                                                                                                                  |                        |                      |                |                |         | -2,00 | -1,00           | 0,00         | 1,00            | 2,00  |                    |
|                 |                                                                                                                  |                        |                      |                |                |         | Fa    | vours control g | roup Favou   | rs intervention | group |                    |

**Meta Analysis** 

### Publication bias: meta-analysis



Egger's regression test: 0.43 (1-tailed p-value)

### Micro-nutrient supplements: risk of bias

**Random sequence generation (selection bias)** 

Allocation concealment (selection bias)

Blinding of participants and personal (performance bias)

Blinding of outcome assessment (detection bias)

**Incomplete outcome data (attriation bias)** 

**Selective reporting (reporting bias)** 

| Sun,<br>2007 | Kwok,<br>2011 | Prado,<br>2012 | Cheng,<br>2016 | Ma,<br>2016 | Ng,<br>2017 |
|--------------|---------------|----------------|----------------|-------------|-------------|
| +            | ?             | +              | ?              | ?           | +           |
| +            | ?             | +              | ?              | ?           | +           |
| +            | +             | +              | +              | +           | -           |
| +            | +             | +              | ?              | ?           | ?           |
| +            | +             | +              | -              | +           | +           |
| +            | +             | +              | +              | +           | +           |

# Micro-nutrient supplements: description studies

| Author      | Sample size | Intervention                                              | Duration  | Study group                               | Country   |
|-------------|-------------|-----------------------------------------------------------|-----------|-------------------------------------------|-----------|
| Cheng, 2016 | 83          | Vitamin B6, B9 and B12                                    | 14 weeks  | Elderly with elevated homocysteine levels | China     |
| Kwok, 2011  | 112         | Vitamin B9 and B12                                        | 104 weeks | Mild to moderate dementia patients        | China     |
| Ma, 2016    | 180         | Vitamin B9                                                | 26 weeks  | Elderly with MCI                          | China     |
| Ng, 2017    | 99          | Multi-fibre, vitamin B6,<br>B9, B12, D, iron and calcium. | 24 weeks  | Pre-frail and frail elderly               | Singapore |
| Sun, 2007   | 89          | Vitamin B12 + multi-vitamin                               | 26 weeks  | Mild to moderate Alzheimer patients       | Taiwan    |
| Prado, 2012 | 640         | Multi-micronutrients                                      | 52 weeks  | Pregnant women                            | Indonesia |

# Micro-nutrient supplements: meta-analysis

### Global performance

| Study name  | Outcome                | Sta                  | tistics for    | dy             |         | Std diff in r | means and 95% CI         |            |                         |      |
|-------------|------------------------|----------------------|----------------|----------------|---------|---------------|--------------------------|------------|-------------------------|------|
|             |                        | Std diff<br>in means | Lower<br>limit | Upper<br>limit | p-Value |               |                          |            |                         |      |
| Sun, 2007   | Combined               | -0,13                | -0,54          | 0,29           | 0,55    |               | _                        |            |                         | 1    |
| Cheng, 2016 | BCAT total score       | 0,31                 | -0,13          | 0,74           | 0,17    |               |                          | ∔∎         | _                       |      |
| Ng, 2017    | RBANS: global score    | 0,51                 | 0,11           | 0,92           | 0,01    |               |                          | I—         | ∎                       |      |
| Ma, 2016    | WAIS-RC: full scale IQ | 0,88                 | 0,57           | 1,19           | 0,00    |               |                          |            | ∎                       |      |
|             |                        | 0,41                 | -0,03          | 0,84           | 0,07    |               |                          |            |                         |      |
|             |                        |                      |                |                |         | -2,00         | -1,00<br>Favours control | 0,00<br>Fa | 1,00<br>vours intervent | 2,00 |

#### Meta Analysis

• Random model analysis of global cognitive tests results.

# Micro-nutrient supplements: meta-analysis



Meta Analysis

#### **Construction and motor performance**



Meta Analysis

• Random model analysis

### Micro-nutrient supplements: conclusion

- Limited number of studies.
- However, results indicate that B-vitamin supplementation could prevent cognitive impairment in certain subgroups
  - e.g. elderly with elevated homocysteine levels.

### Nutrition education: risk of bias

**Random sequence generation (selection bias)** 

**Allocation concealment (selection bias)** 

Blinding of participants and personal (performance bias) Blinding of outcome assessment (detection bias)

Incomplete outcome data (attriation bias)

Selective reporting (reporting bias)

| Kwok,<br>2012 | Johari,<br>2014 | Lee,<br>2014 | Rosli,<br>2017 |
|---------------|-----------------|--------------|----------------|
| ?             | ?               | +            | +              |
| ?             | ?               | +            | +              |
| -             | -               | -            | -              |
| +             | ?               | +            | +              |
| -             | +               | -            | +              |
| +             | +               | ?            | -              |

\* Cochrane risk of bias tool

### Nutrition education: description studies

| Author       | Sample size | Intervention                                                                                                    | Duration  | Study group                                    | Country   |
|--------------|-------------|-----------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------|-----------|
| Johari, 2014 | 35          | Monthly lifestyle<br>and education<br>sessions                                                                  | 12 months | Elderly with MCI                               | Malaysia  |
| Kwok, 2012   | 307         | Dietary support<br>groups                                                                                       | 33 months | Non-demented elderly living in old-age hostels | Hong Kong |
| Lee, 2014    | 175         | Bimonthly health<br>worker visits,<br>counselling, and<br>rewards to adherence to<br>the program.               | 18 months | Elderly                                        | Korea     |
| Rosli, 2017  | 256         | Multicomponent group<br>exercises, nutrition<br>education, oral care<br>education, and<br>psychosocial support. | Six weeks | Elderly from poor urban settings               | Malaysia  |

### Nutrition education: meta-analysis

### **Global performance**

|              | Outcome  | Sta                  | atistics for   | each stud      | y_      | Std diff in means a                   | and 95% CI                       |
|--------------|----------|----------------------|----------------|----------------|---------|---------------------------------------|----------------------------------|
|              |          | Std diff<br>in means | Lower<br>limit | Upper<br>limit | p-Value |                                       |                                  |
| Kwok, 2012   | Combined | -0,10                | -0,33          | 0,12           | 0,37    | │ │ -■┼                               |                                  |
| Rosli, 2017  | Combined | 0,16                 | -0,09          | 0,42           | 0,21    |                                       | -                                |
| Johari, 2014 | Combined | 0,19                 | -0,48          | 0,85           | 0,59    |                                       |                                  |
|              |          | 0,03                 | -0,17          | 0,23           | 0,75    | • •                                   |                                  |
|              |          |                      |                |                |         | -2,00 -1,00 0,00<br>Favours control F | 1,00 2,00<br>avours intervention |

Meta Analysis

### Nutrition education: conclusion

- Limited number of studies, and large heterogeneity between studies.
- No convincing evidence yet for an intervention, based on promotion of a specific diet, for prevention of cognitive impairment.

### EPA / DHA supplements: risk of bias

**Random sequence generation (selection bias)** 

Allocation concealement (selection bias)

**Blinding of participants and personnal (performance bias)** 

Blinding of outcome assessment (detection bias)

**Incomplete outcome data (attriation bias)** 

Selective reporting (reporting bias)

| Chiu,<br>2008 | Bo,<br>2017 | Zhang,<br>2017 |
|---------------|-------------|----------------|
| ?             | +           | +              |
| ?             | +           | +              |
| -             | -           | +              |
| ?             | ?           | +              |
| +             | +           | +              |
| +             | +           | +              |

\* Cochrane risk of bias tool

# EPA / DHA supplements: description studies

| Author      | Sample size | Intervention                                     | Duration      | Study group      | Country |
|-------------|-------------|--------------------------------------------------|---------------|------------------|---------|
| Bo, 2017    | 86          | Daily dosage of 720<br>mg EPA and 480 mg<br>DHA  | Six months    | Elderly with MCI | China   |
| Chiu, 2008  | 29          | Daily dosage of 1080<br>mg EPA and 720 mg<br>DHA | Six months    | Elderly with MCI | Taiwan  |
| Zhang, 2017 | 240         | Daily dosage of 2000 mg DHA                      | Twelve months | Elderly with MCI | China   |

# EPA / DHA supplements: meta-analyis

### **Global performance**

|             | Outcome                | Statistics for each study |                |                |         | Std diff in means and 95% CI |                                  |             |                        |             |
|-------------|------------------------|---------------------------|----------------|----------------|---------|------------------------------|----------------------------------|-------------|------------------------|-------------|
|             |                        | Std diff<br>in means      | Lower<br>limit | Upper<br>limit | p-Value |                              |                                  |             |                        |             |
| Chiu, 2008  | Combined               | 0,14                      | -0,60          | 0,88           | 0,70    |                              | -                                | _ <b> </b>  | <u> </u>               |             |
| Bo, 2017    | BCAT: total score      | 0,62                      | 0,19           | 1,06           | 0,00    |                              |                                  | —           | ▰┤                     |             |
| Zhang, 2017 | WAIS-RC: Full scale IQ | 1,21                      | 0,94           | 1,49           | 0,00    |                              |                                  |             | ┼┳╌                    |             |
| 21          |                        | 0,73                      | 0,14           | 1,32           | 0,01    |                              |                                  |             |                        |             |
|             |                        |                           |                |                |         | -2,00                        | - <b>1,00</b><br>Favours control | 0,00<br>Fav | 1,00<br>ours intervent | 2,00<br>ion |

**Meta Analysis** 

# EPA / DHA supplements: conclusion

- Limited number of studies.
- Individual studies, and meta-analysis, show positive significant effect of EPA / DHA supplements in elderly with MCI.
- Possibly promising strategy for prevention of dementia in East Asia.

### Overall conclusion

- To date, most promising results found for EPA / DHA supplementation, followed by micronutrient supplementation.
  - Large scale studies need to identify into what extend national supplementation policies could lower dementia incidence, and which subgroups need to be targeted.
- In addition, more studies needed to identify the potential of health promotion (nutrition education) for prevention of cognitive impairment in East Asian countries.